

Hjärtscreening av idrottare

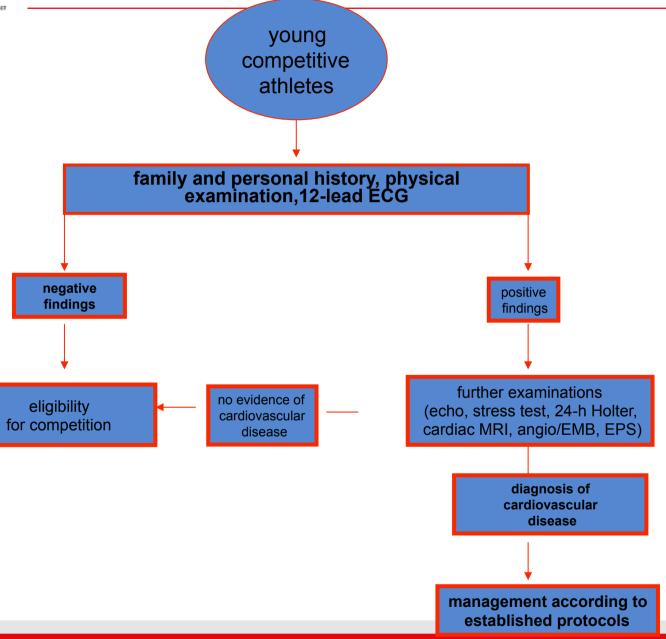
Mats Börjesson, Professor, MD, FESC, FACC, FACSM

Head of Center for Health and Performance (CHP), Göteborgs University, Inst Neurophysiology and Physiology, Sahlgrenska Academy & Sahlgrenska University Hospital/Östra, Göteborg

Causes of SCD in the young

- Hypertrophic cardiomyopathy (HCM)
- Other cardiomyopathies (ARVC)
- Myocarditis, 3-7%
- Coronary artery anomaly-CAA, 5-20%
- Primary electrical disease (LQT, SQT, Brugada, WPW, PCVT)- 50% of "normal hearts"?
- Other structural heart conditions, 3-8%
- -aortic dissection
- -valve disease (AS, MVP?)

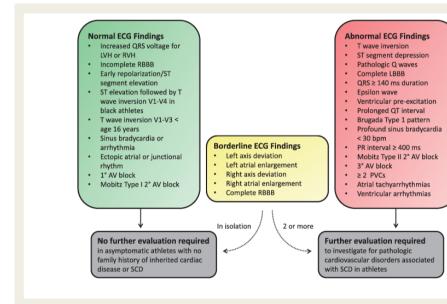
Doping-?


CAA (left from right, Course between PA and aorta)

ESC screening recommendations

orrado et al, ur Heart J 2005

Sports Cardiology- ECG recommendations, April 2017


URNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
2017 THE AUTHORS. PUBLISHED BY ELSEVIER INC. ON BEHALF OF AMERICAN
OLLEGE OF CARDIOLOGY FOUNDATION. ALL RIGHTS RESERVED.

VOL. 69, NO. 8, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2017.01.015

URRENT OPINION

nternational Recommendations for Electrocardiographic Interpretation n Athletes

anjay Sharma, MD, a,* Jonathan A. Drezner, MD, b,* Aaron Baggish, MD, Michael Papadakis, MD, athew G. Wilson, PhD, Jordan M. Prutkin, MD, MHS, Andre La Gerche, MD, PhD, Michael J. Ackerman, MD, PhD, ats Borjesson, MD, PhD, Jack C. Salerno, MD, Irfan M. Asif, MD, David S. Owens, MD, MS, ats Borjesson, MD, MS, Michael S. Emery, MD, Victor F. Froelicher, MD, Hein Heidbuchel, MD, PhD, armen Adamuz, MD, PhD, Chad A. Asplund, MD, Gordon Cohen, MD, Kimberly G. Harmon, MD, seph C. Marek, MD, Silvana Molossi, MD, Josef Niebauer, MD, PhD, Hank F. Pelto, MD, Marco V. Perez, MD, athan R. Riding, PhD, Tess Saarel, MD, Christian M. Schmied, MD, David M. Shipon, MD, acardo Stein, MD, ScD, Victoria L. Vetter, MD, MPH, Antonio Pelliccia, MD, and Domenico Corrado, MD, PhD

leta-analysis: sensitivity

Available online at www.sciencedirect.com

ScienceDirect

Journal of Electrocardiology 48 (2015) 329-338

JOURNAL OF Electrocardiolog

www.jecgonline.c

effectiveness of screening history, physical exam, and ECG to detective potentially lethal cardiac disorders in athletes:

A systematic review/meta-analysis

imberly G. Harmon, M.D., a, b, Monica Zigman, M.P.H., Jonathan A. Drezner, M.D. a

Department of Family Medicine, University of Washington, Seattle, WA, USA
 Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA

alysis of pooled data.

	ECG	History	Physical	
ty	94% (79%–98%)	20% (7%-44%)	9% (3%-	
ty	93% (90%–96%)	94% (89%–96%)	97% (95%	
likelihood ratio*	14.8 (9.43-23.16)	3.22 (1.3-8.01)	2.93 (1.26	
likelihood ratio*	0.055 (0.012-0.25)	0.85 (0.68-1.07)	0.93 (0.85	
tation of likelihood ratios				

Exercise related sudden cardiac death (SCD) in the young

 pre-mortal characterization of a Swedish nationwide cohort, showing a decline in SCD among athletes

Presented at ESC Congress, Paris, Sep 2, 2019

Accepted for publication Rescucitation, Sep 19,

Aase Wisten

Umea University, Umea, Sweden

Mats Börjesson

Sahlgrenska Academy - University of Gothenburg, Goteborg, Sweden

Peter Krantz

Lund University, Lund, Sweden

Eva-Lena Stattin Uppsala University, Uppsala, Sweden

Exercise related SCD in 10-35-year olds in Sweden

- 514 cases of SCD, 373 men (73%) and 141 (27%) women 2000-2010*
 - 62 cases of exertional SCD, 56 men (90%) and 6 women (10%)
 - 21/62 (33%) were athletes**
 - 30/62 (48%) had premortal risk factors
 - Cardiac symptoms/diagnoses (n= 25)
 - Family history (n=9)
 - ECG abnormalities*** (n=18)

Wisten et al. Sudden cardiac death among the young in Sweden from 2000 to 2010: an autopsy-based study. Europace. 2017 Aug 1;19(8):1327-1334. doi: 10.1093/ceuropace/euw249.

defined as a person who participated in an organized team or individual sport that required regular practice and competitions.

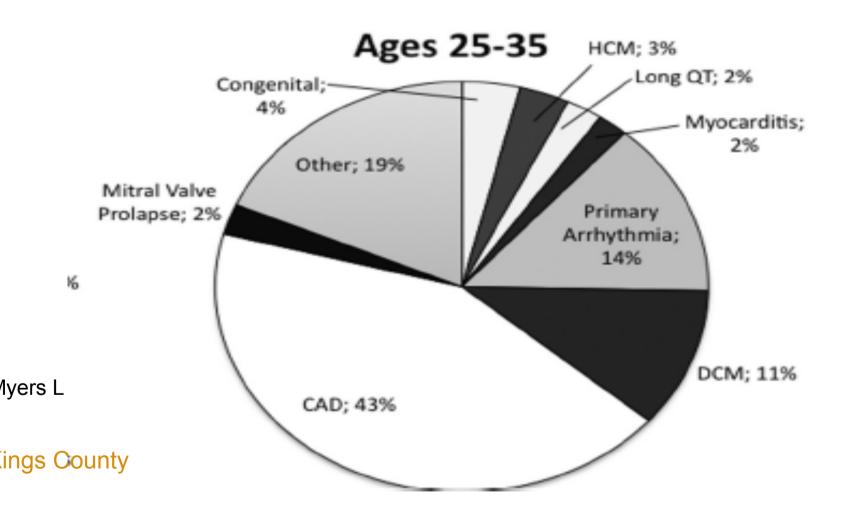
Sharma et al. International recommendations for electrocardiographic interpretation in athletes. Eur Heart J. 2018 Apr 21;39(16):1466-1480. doi: 10.1093/eur neartj/ehw631

Athletes vs non-athletes

- SCD during exercise was more common in athletes (21/29) than in non-athletes (41/485) (P<0.0001)
- Decline in SCD
 - 5 SCD/year in athletes 15-35 years old (1992-1999)*
 - 2.3 SCD/year in athletes 15-35 years old (2000-2010)

Study conclusion

- 12% of SCD in the young was exercise-related
- The risk of exercise-related SCD was higher for athletes
- Exercise seemed to trigger SCD in men with HCM and ARVC
- About 50% had a premortal risk profile
- SCD incidence in athletes in the 2000's has been halved compared to the 1990's



D most common cause of SCD from 25-35y

Master athletes**↑**

Incidence: 4.40/100 000 A KONGRESS

Person years

Subclinical disease among veterans...

Sahlen, 2009)

- N=185 from 30 km cross-country race
- 71% male; mean age 62y; no known cardiac disease
- NT-pro BNP and hs-CRP measured
- Results: 15 NT-proBNP > 194 ng/L
 - ⇒ 4 of those severe CVD
 - 1 Male 57; BNP 219: CRP 0.2: BP 176/108+ ascending aortic aneurysm
 - 2 Male 74; BNP 2250; CRP 2.6: LVH, EF 30%, atrial fibrillation 3 Male 65; BNP 339; CRP 2.4: severe CAD leading to CABG
 - 4 Male 69; BNP 363; CRP 2.0; SCD, severe CAD, silent MI, LVH

Screening of the older athlete

European Journal of Cardiovascular Prevention & Rehabilitation

Review

Cardiovascular evaluation of middle-aged/ senior individuals engaged in leisure-time sport activities: position stand from the sections of exercise physiology and sports cardiology of the European Association of Cardiovascular Prevention and Rehabilitation

Mats Borjesson¹, Alex Urhausen², Evangelia Kouidi³, Dorian Dugmore⁴, Sanjay Sharma⁵, Martin Halle⁶, Hein Heidbüchel⁷, Hans Halvor Björnstad⁸, Stephan Gielen⁹, Alessandro Mezzani¹⁰, Domenico Corrado¹¹, Antonio Pelliccia¹² and Luc Vanhees¹³

European Journal of Cardiovascula Prevention & Rehabilitation 18(3) 446–458

© The European Society of Cardiology 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions DOI: 10.1177/HJR.0b013e32833bo ejcpr.sagepub.com

\$SAGE

Screening recommendations according 1 Intensity-level of intended PA;

- 2. Risk profile;
- 3. Habitual exercise

Initial self-assessment

Initially, by a self-evaluation

-AHA/ACSM questionnaire

-revised PAR-Q

Secondarily, a risk stratification by a physician (if necessary)

-by SCORE

Table	2.	Revised	Physical	Activity	Readiness	Questionnaire
	_	11011300	,	, , , , , , , ,	1 toudilloss	Questionnan e

ı	Has a doctor ever said that you have a heart	Yes/N
	condition and recommended only medically	
	supervised activity?	
2	Do you have chest pain brought on by physical	Yes/N
	activity?	
3	Have you developed chest pain in the past month?	Yes/N
4	Have you on I or more occasions lost consciousness	Yes/N

5 Do you have a bone or joint problem that could be Yes/N aggravated by the proposed physical activity?

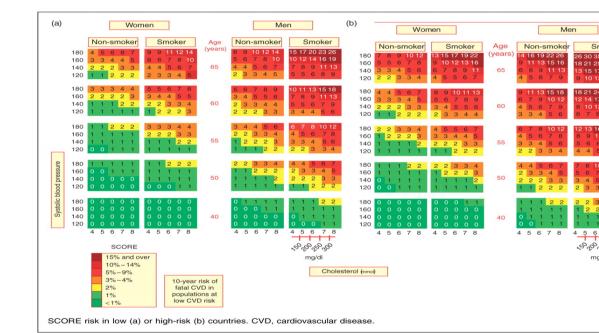
6 Has a doctor ever recommended medication for your blood pressure or a heart condition?

or fallen over as a result of dizziness?

7 Are you aware, through your own experience or a Yes/N doctor's advice, of any other physical reason that would prohibit you from exercising without medical supervision?

Adopted from Balady. Circulation 1998; 97:2283-2293.

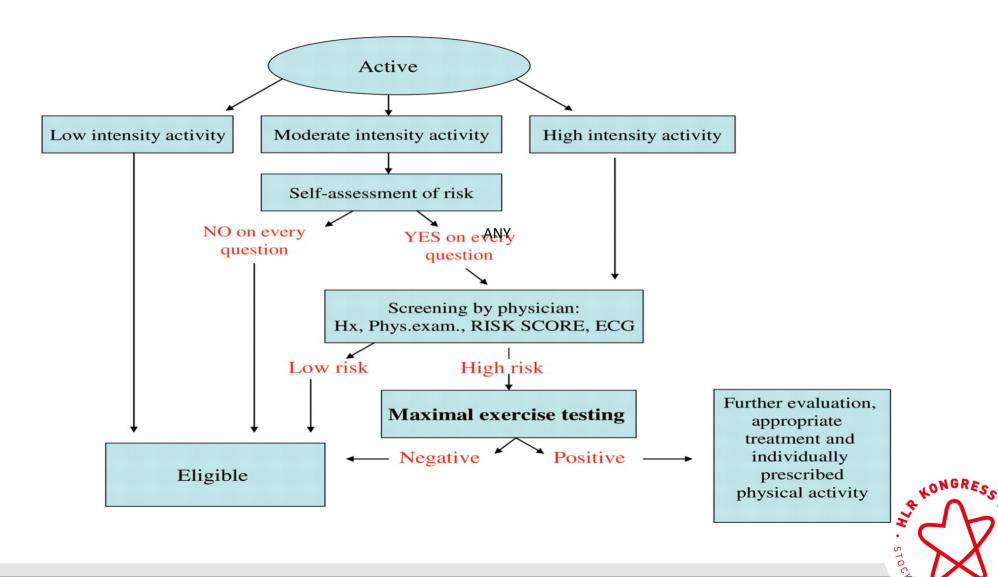
Yes/N


Risk factor profile

In asymptomatic subjects, the total CAD-risk level can be estimated from the presence of major risk factors, according to the SCORE (systematic coronary risk evaluation)-system

- -blood pressure
- -age
- -sex
- -smoking
- -total cholesterol (ESC prevention)

In addition, diabetes and mily history can be added


os! Framingham risk score (FRS) similar

Specific pre-participation screening work-up for regularly active middle-aged/senior individuals.

Pre-Race SAFER Intervention Study

Pre intervention (2008-2011) - Post intervention (2012 – 2015)

Does a pre-race screening and educational intervention reduce medical complications during a race?

Prerace medical screening and education red medical encounters in distance road races: Sastudy in 153 208 race starters

Martin Schwellnus, ^{1,2,3} Sonja Swanevelder, ⁴ Wayne Derman, ^{2,5} Mats Borj Karen Schwabe, ⁹ Esme Jordaan ^{4,10}

ABSTRAC

published online only. To view please visit the journal online

(http://dx.doi.org/10.1136/ bisports-2018-099275).

For numbered affiliations see

Professor Martin Schwellnus, Sport, Exercise Medicine and

Lifestyle Institute (SEMLI) and Section Sports Medicine,

University of Pretoria, Pretoria 0020. South Africa:

Accepted 26 October 2018

end of article.

Correspondence to

mschwell@iafrica.com

Objectives To examine the efficacy and feasibility of an online prerace medical screening and educational intervention programme for reducing medical complications in long-distance races.

Methods This was an 8-year observational study of medical encounter rates among 153 208 Two Oceans race starters (21.1 and 56 km) in South Africa. After the first 4-year control (CON) period, we introduced an online prerace medical screening (based on European pre-exercise screening guidelines) and an automated educational intervention programme. We compared the incidence of medical encounters (per 1000 starters; all and serious life threatening) in the CON versus the 4-year intervention (INT) period.

Results In comparison to the CON period (2008–2011: 65 865 starters), the INT period (2012-2015: 87 343 starters) had a significantly lower incidence (adjusted for age group, sex, race distance) of all medical encounters by 29% (CON=8.6 (7.9-9.4); INT=6.1 (5.6-6.7), p<0.0001), in the 21.1 km race by 19% (CON=5.1 (4.4-5.9); INT=4.1 (3.6-4.8), p=0.0356) and in the 56 km race by 39% (CON=14.6 (13.1-16.3); INT=9.0 (7.9-10.1), p<0.0001). Serious life-threatening encounters were significantly reduced by 64% (CON=0.6 (0.5-0.9); INT=0.2 (0.1-0.4); p=0.0003) (adjusted for age group and sex). Registration numbers increased in the INT period (CON=81 345; INT=106 743) and overall % race starters were similar in the CON versus INT period. Wet-bulb globe temperature was similar in the CON and INT periods.

Conclusion All medical encounters and serious lifethreatening encounters were significantly lower after the introduction of a prescreening and educational intervention programme, and the programme was feasible.

INTRODUCTION

© Author(s) (or their employer(s)) 2018. No commercial re-use. See rights and permissions. Published by BMJ.

To citte: Schwellnus M, commercial recommendation of the commendation of the

To cite: Schwellnus M, Swanevelder S, Derman W, et al. Br J Sports Med Epub ahead of print: [please include Day Month Year]. doi:10.1136/ bjsports-2018-099275

Check for updates

Regular physical activity (PA) is an important lifestyle intervention for primary and secondary prevention of non-communicable disease. ** The recommended minimum weekly healthy 'dose' of exercise is 150 min at moderate to vigorous intensity. ** Mass community-based sports events such as distance running events have, over the last two to three decades, seen substantial growth in participant numbers, ** with a notable increase in older participants (http://www.runningusa.org/annual-reports). While regular PA has numerous health benefits, PA is associated with medical encounters, ** 10 including acute myocardial infarction and sudden death. ¹¹⁻¹⁸

What are the findings?

- An online prerace medical scree educational intervention progra significantly reduce medical en alter race starter risk profile.
- It is feasible to implement an o medical screening and education programme at a mass communication running event.
- The results of this study have the change current practice of provements at mass community-based sports events worldwide.
- Race organisers and race medic consider implementing such pre improve race safety.

How might it impact on clinica future?

- Race medical directors and rac may consider implementing ar medical screening and educati programme at mass communit andurance events
- Race medical directors and race document the impact of implen programmes.
 Implementation of prerace medical
- Implementation of prerace n and education could lead to safety.
- The results of this study hav change policy.

The reported absolute risk of sud marathons, and similar races, vari and 0.033 per 1000 race entrar dence of other non-cardiac, but s ening medical encounters durin well studied,²²⁻²⁸ but is about 0 entrants (0.17–1.55 per 1000 rac

To reduce the risk of acute mediduring sport, precompetition mhas been proposed, with the main elite athletes. 14 25-33 However, the population has a higher incidence complications during exercise 4 international organisations devents.

Design and implementation

Three-step SAFER screening and educational intervention program:

- 1. Compulsory completion of a pre-participation medical questionnaire at race entry (4-6 months before an event)
- 2. Risk stratification:
 - Very high risk

Existing CVD, symptoms of CVD

High risk

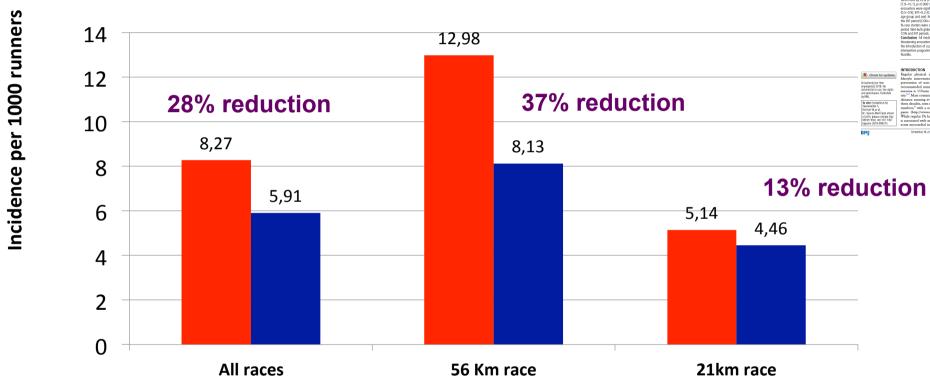
- Risk factors for CVD

- Intermediate risk
- Other chronic disease, medication use,

history of medical complications during

exercise

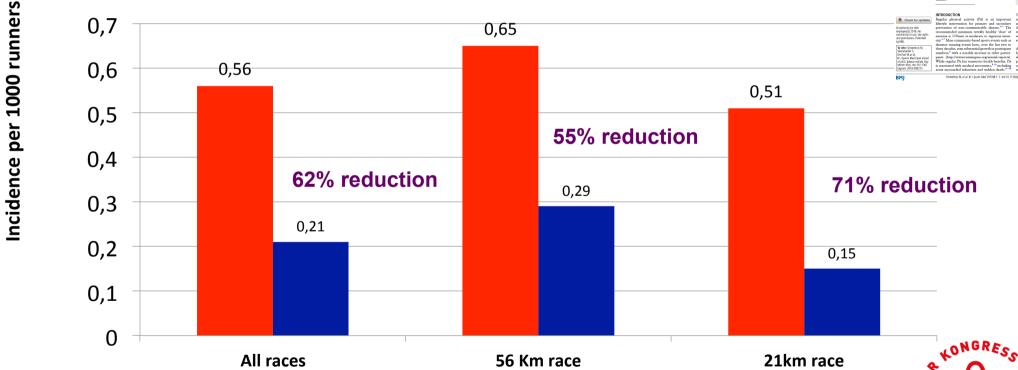
Low risk


- "No" answer to all medical screening questions
- 3. Educational intervention:
 - Personalized educational information
 - General medical educational

Pre- vs. Post Screening (2008-2015)(Incidence of <u>all</u> medical complications)

Pre intervention (2008-2011) Post intervention (2012-2015)

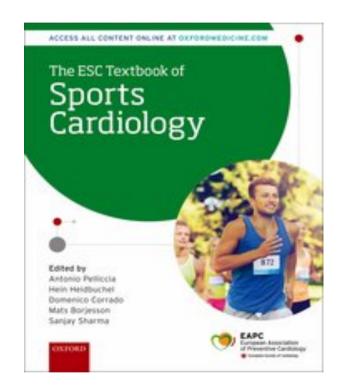
Schwellnus M, Schwabe K, Swanevelder S, Jordaan E, Derman W, et al, BJSM, April 2019



Pre-vs. Post Screening (2008-2015) (Incidence of serious life threatening medical complications)

Pre intervention (2008-2011)

■ Post intervention (2012-201!



Schwellnus M, Schwabe K, Swanevelder S, Jordaan E, Derman W, et al, BJSM, Apr 2019

To read more...

2019

