

Copenhagen EMS Use of AI in medical dispatch

EMDC-Copenhagen case

Disclosure

I have no actual or potential conflict of interest in relation to this research project.

- Received an unrestricted research grant from TrygFoundation
- Received centresupport from Laerdal

Why is artificial intelligence relevant for Out-of-Hospital Cardiac Arrest?

Laerdal Medical (2014). Quality CPR matters. Retrieved from http://www.laerdal.com/ca/docid/36691005/Quality-CPR-matters

Recognising out-of-hospital cardiac arrest is the challenge

- We have trained dispatchers in recognising OHCA
- We use decision support tools
- Still, we recognize just about 75% of all

EMS-treated cardiac arrests

Can Al help? How EMDC-Copenhagen uses Al.

- We set out to investigate if AI can be used as a desicion support tool in medical dispatch
- It is a tool for support, not a final bottom line

RESUSCITATION 138 (2019) 322-329

Available online at www.sciencedirect.com

Resuscitation

Clinical paper

Machine learning as a supportive tool to recognize cardiac arrest in emergency calls

Stig Nikolaj Blomberg ^{a,b,*}, Fredrik Folke ^{a,b,c}, Annette Kjær Ersbøll ^d, Helle Collatz Christensen ^a, Christian Torp-Pedersen ^{e,f}, Michael R. Sayre ^g, Catherine R. Counts ^g, Freddy K. Lippert ^{a,b}

^a Emergency Medical Services Copenhagen, Denmark

^b Department of Clinical Medicine, University of Copenhagen, Denmark

^c Department of Cardiology, Gentofte University Hospital, Denmark

^d National Institute of Public Health, University of Southern Denmark, Denmark

^e Department of Clinical Epidemiology, Aalborg University Hospital, Denmark

¹ Department of Health Science and Technology, Aalborg University, Denmark

⁹ Department of Emergency Medicine, University of Washington, United States

Can Al recognize cardiac arrest from audio. Retrospective study all calls in 2014

- 108,607 incidents with call to emergency number (1-1-2)
- 918 calls regarding cardiac arrest
- 84.1% recognised by AI (95% CI: 81.6-86.4)
- 72.4% (95% CI: 69.4-75.3). Recognised by Dispatch
- 107 previously unrecognised OHCA recognised

Status	Medical dispatch Machine learning framework	
Recognized cardiac arrests	665	772
Unrecognized cardiac arrests	253	146
Cardiac arrest in population	918	918

Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., ... & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. *Resuscitation*.

The other side of the coin False positive

- 108,607 incidents with call to emergency number (1-1-2)
- 918 calls regarding cardiac arrest
- 1,300 false positives by dispatcher
- 2,900 false positive by Al
- 1,600 extra cardiac arrest alerts

- Problem ?
- Consequence ?

Can Al work on live audio in clinical practice

- Prospective randomised trial
- Started september 2018
- 12 months, at least 400 arrests in each group
- Dispatchers in intervention group will receive alert in case of AI recognised cardiac arrest

 Alert: Dispatch High-Priority light and sirens; repeat No-No-Go; Dispatch Citizen responders

FACULTY OF HEALTH AND MEDICAL SCIENCES

Happening right now

Challenges using Al

- Data ethics
- Overfitting model
- Public opinion on data usage
- Data validation and "time changes"
- Black box vs known impact of single factors

Thank you.

My supervisors

Freddy Lippert

MD, Associate Professor, FERC, CEO Emergency Medical Services Copenhagen

Helle Collatz Christensen

MD, PhD, The Danish Clinical Registries (RKKP)

Fredrik Folke

MD, PhD, Associate Professor Copenhagen University Hospital, Gentofte

Annette Kjær Ersbøll

MSc, PhD, Professor, National Institute of Public Health

Summary

Al can be trained to recognize Cardiac Arrest

Al can improve recognition of Cardiac Arrest

Al is a decision support tool

A randomized clinical trial is being performed, preliminary results expected autumn 2019

Status	Medical dispatch Machine learning framework	
Recognized cardiac arrests	665	772
Unrecognized cardiac arrests	253	146
Cardiac arrest in population	918	918

Blomberg, S. N., Folke, F., Ersbøll, A. K., Christensen, H. C., Torp-Pedersen, C., Sayre, M. R., ... & Lippert, F. K. (2019). Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. *Resuscitation*.