Copenhagen EMS
Use of AI in medical dispatch

EMDC-Copenhagen case
Disclosure

I have no actual or potential conflict of interest in relation to this research project.

• Received an unrestricted research grant from TrygFoundation
• Received centresupport from Laerdal
Why is artificial intelligence relevant for Out-of-Hospital Cardiac Arrest?

Recognising out-of-hospital cardiac arrest is the challenge

- We have trained dispatchers in recognising OHCA
- We use decision support tools
- Still, we recognize just about 75% of all EMS-treated cardiac arrests
Can AI help?
How EMDC-Copenhagen uses AI.

• We set out to investigate if AI can be used as a decision support tool in medical dispatch

• It is a tool for support, not a final bottom line
Clinical paper

Machine learning as a supportive tool to recognize cardiac arrest in emergency calls

Stig Nikolaj Blomberga,b,*, Fredrik Folkea,b,c, Annette Kjaer Ersbølld, Helle Collatz Christensena, Christian Torp-Pedersene,f, Michael R. Sayreg, Catherine R. Countsg, Freddy K. Lipperta,b

a Emergency Medical Services Copenhagen, Denmark
b Department of Clinical Medicine, University of Copenhagen, Denmark
c Department of Cardiology, Gentofte University Hospital, Denmark
d National Institute of Public Health, University of Southern Denmark, Denmark
e Department of Clinical Epidemiology, Aalborg University Hospital, Denmark
f Department of Health Science and Technology, Aalborg University, Denmark
g Department of Emergency Medicine, University of Washington, United States
Can AI recognize cardiac arrest from audio. Retrospective study all calls in 2014

- 108,607 incidents with call to emergency number (1-1-2)
- 918 calls regarding cardiac arrest
- 84.1% recognised by AI (95% CI: 81.6-86.4)
- 72.4% (95% CI: 69.4-75.3). Recognised by Dispatch
- 107 previously unrecognised OHCA recognised

<table>
<thead>
<tr>
<th>Status</th>
<th>Medical dispatch</th>
<th>Machine learning framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognized cardiac arrests</td>
<td>665</td>
<td>772</td>
</tr>
<tr>
<td>Unrecognized cardiac arrests</td>
<td>253</td>
<td>146</td>
</tr>
<tr>
<td>Cardiac arrest in population</td>
<td>918</td>
<td>918</td>
</tr>
</tbody>
</table>

The other side of the coin
False positive

- 108,607 incidents with call to emergency number (1-1-2)
- 918 calls regarding cardiac arrest
- 1,300 false positives by dispatcher
- 2,900 false positive by AI
- 1,600 extra cardiac arrest alerts

- Problem ?
- Consequence ?
Can AI work on live audio in clinical practice

- Prospective randomised trial
- Started September 2018
- 12 months, at least 400 arrests in each group
- Dispatchers in intervention group will receive alert in case of AI recognised cardiac arrest

- Alert: Dispatch High-Priority light and sirens; repeat No-No-Go; Dispatch Citizen responders
1. Maskinen mistænker hjertestop.

2. Der bliver trukket lod om advarsel skal vises på skærmen.
Happening right now
Challenges using AI

• Data ethics
• Overfitting model
• Public opinion on data usage
• Data validation and “time changes”
• Black box vs known impact of single factors
My supervisors

Freddy Lippert
MD, Associate Professor, FERC, CEO
Emergency Medical Services Copenhagen

Helle Collatz Christensen
MD, PhD,
The Danish Clinical Registries (RKKP)

Fredrik Folke
MD, PhD, Associate Professor
Copenhagen University Hospital, Gentofte

Annette Kjær Ersbøll
MSc, PhD, Professor, National Institute of Public Health
Summary

AI can be trained to recognize Cardiac Arrest
AI can improve recognition of Cardiac Arrest
AI is a decision support tool
A randomized clinical trial is being performed, preliminary results expected autumn 2019

<table>
<thead>
<tr>
<th>Status</th>
<th>Medical dispatch</th>
<th>Machine learning framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognized cardiac arrests</td>
<td>665</td>
<td>772</td>
</tr>
<tr>
<td>Unrecognized cardiac arrests</td>
<td>253</td>
<td>146</td>
</tr>
<tr>
<td>Cardiac arrest in population</td>
<td>918</td>
<td>918</td>
</tr>
</tbody>
</table>